

Πρόεδρος, Τμήμα Επιστήμης Τροφίμων & Διατροφής του Ανθρώπου Γεωπονικό Πανεπιστήμιο Αθηνών

Linear correlation coefficients among simple and combined food- groups and mortality from CHD							
	R	95% CI					
Oils	-0.571	-0.825 -0.086					
Butter	0.887	0.683 0.958					
Meat	0.645	0.199 0.859					
Fish	-0.279	-0.676 0.260					
Milk	0.600	0.129 0.839					
Cheese	0.407	-0.124 0.745					
Alcohol	-0.609	-0.843 -0.142					
Bread	-0.001	-0.496 0.495					
Cereals	-0.305	-0.688 0.238					
Potatoes	0.464	-0.057 0.774					
Vegetables	-0.228	-0.646 0.309					
Legumes	-0.822	-0.933 -0.531					
Fruit	0.118	-0.404 0.577					
	Menotti A et al El	ur J Epidemiol 1999;15:507-15					

Quintile	Controls/cases (n)	Median intake (g/day)	Multivariate adjusted ORª (95% CI)	Multivariat Adjusted O (95% CI)
1	32/36	7.2	1	1
2	35/37	12	1.17 (0.46-3.02)	1.16 (0.46-2.
3	36/30	25.0	0.69 (0.28-1.67)	0.60 (0.24-1
4	31/39	29.3	0.91 (0.38-2.18)	0.83 (0.34-2.
5	37/29	54.3	0.36 (0.12-1.08)	0.26 (0.08-0.
Trend test P-value			0.05	0.02
^a conditional logistic blood pressure, high status, occupation ar	regression (age-, hospit blood cholesterol, diab nd study level.	al- and gender-match etes, leisure-time ph	ned pairs), adjusted for s ysical activity (METS-hou	moking, BMI, hi rs/week), marit

Predicted changes in death rates from CHD for defined changes in f consumption, assuming causation							
Change in average consumption of	From about (g)	To about (g)	Predicted changes of CHD death rate (%)				
Oils	25	55 (+ 30 g)	- 18.3				
Legumes	24	54 (+ 30 g)	- 28.2				
Butter	14	44 (+ 30 g)	+ 52.6				
Meat	120	70 (- 50 g)	- 24.4				

60 (+ 30 g)

121 (- 152 g)

20 (- 15 g)

40 (half)

44 (half)

+ 9.5

- 57.5

- 18.6

- 20.4

- 22.8

Menotti A et al Eur J Epidemiol 1999;15:507-1

30

273

35

80

88

Cheese

Meat in US Railroad

Butter in East Finland

Sugar products

Dairy products

Quintile	Controls/cases (n)	Median intake (g/day)	Multivariate adjusted OR ^a (95% CI)	Multivariate Adjusted OR ^b (95% CI)
1	28/40	6.1	1	1
2	38/31	13.6	0.39 (0.15-1.00)	0.45 (0.16-1.25)
3	38/30	21.0	0.40 (0.17-0.93)	0.44 (0.18-1.07)
4	29/40	30.9	0.59 (0.23-1.52)	0.70 (0.24-2.02)
5	38/30	52.2	0.22 (0.07-0.67)	0.18 (0.05-0.63)
Trend test P-value			0.03	0.03
^e conditional logistic regi- high blood cholesterol, di level.	ession (age-, hospital- an iabetes, leisure-time phys	d gender-matched pairs sical activity (METS-hou), adjusted for smoking, BM rs/week), marital status, occ	I, high blood pressure, cupation and study

Fruit, vegetables, and olive oil and risk of coronary heart disease in Italian women: the EPICOR Study

- **Objective:** Association between consumption of fruit, vegetables, and olive oil and the incidence of coronary heart disease (CHD) in 29,689 women enrolled between 1993 and 1998 in 5 European Prospective Investigation into Cancer and Nutrition (EPIC) cohorts in northern (Turin and Varese), central (Florence), and southern (Naples and Ragusa) Italy.
- Design: Major events of CHD (fatal and nonfatal myocardial infarction and coronary revascularization) were identified through a review of clinical records.
- **Results:** During a mean follow-up of 7.85 y, 144 major CHD events were identified. A strong reduction in CHD risk among women in the highest quartile of consumption of leafy vegetables (hazard ratio: 0.54; 95% CI: 0.33, 0.90; P for trend = 0.03) and olive oil (hazard ratio: 0.56; 95% CI: 0.31, 0.99; P for trend = 0.04) was found

Berdinelli B et al Am J Clin Nutr 2011;93:275-8

Olive oil intake and mortality within the Spanish population (EPIC-Spain)

enevieve Buckland, Ana Lucia Mayén, Antonio Agudo. Noemie Travier, Carmen Navarro, José Maria Huerta, Iaria Dolores Chirlaque, Aurelio Barricarte, Eva Anlanaz, Conchi Moreno-Iribas, Pilar Marin, J Ramón Quiroís, Iaria-Luisa Redondo, Pilar Amiano, Miren Dorronsono, Larraitz Arriola, Esther Molina, Maria-José Sanchez, al Carlos A Gonzalez.

Objective: The association between olive oil and overall and cause-specific mortality in the Spanish population in the European Prospective

Investigation into Cancer and Nutrition (EPIC-Spain) was evaluated.

Design: A total of 40,622 participants (62% female) aged 29-69 y were

recruited from 5 Spanish regions in 1992–1996. The association between

olive oil (analyzed as a categorical and continuous variable) and overall and

cause-specific mortality (CVD, cancer, and other causes) was analyzed by

using Cox proportional hazards regression models adjusted for potential

confounders.

Buckland G et al Am J Clin Nutr 2012;96:142-

Association [HR (95% CI)] between olive oil intake and all-cause and cause-specific mortality in the EPIC-Spain cohort¹

		Olive of					
Aortality cause ²	Nonconsumers	Q1 (<14.8)	Q2 (≥14.8 to <21.7)	Q3 (≥21.7 to <29.4)	Q4 (≥29.4)	P-trend	Ofive oil intake (10 g \cdot 2000 kcal ⁻¹ \cdot d ⁻¹
All-cause deaths (n)	376	426	373	378	362		1915
Unadjusted HR ²	1 (referent)	0.85 (0.74, 0.98)	0.80 (0.69, 0.93)	0.77 (0.67, 0.90)	0.72 (0.62, 0.84)	<0.001	0.93 (0.90, 0.96)
Multivariate HR4	I (referent)	0.88 (0.76, 1.01)	0.83 (0.71, 0.96)	0.80 (0.69, 0.93)	0.74 (0.64, 0.87)	< 0.001	0.93 (0.90, 0.97)
VD deaths (n)	92	98	80	78	68		416
Unadjusted HR?	1 (referent)	0.81 (0.60, 1.08)	0.72 (0.53, 0.98)	0.68 (0.50, 0.93)	0.56 (0.41, 0.78)	< 0.001	0.87 (0.81, 0.94)
Multivariate HR4	1 (referent)	0.87 (0.64, 1.17)	0.77 (0.56, 1.06)	0.71 (0.52, 0.98)	0.56 (0.40, 0.79)	<0.001	0.87 (0.80, 0.94)
ancer deaths (n)	172	210	182	200	192		956
Unadjusted HR*	1 (referent)	0.98 (0.79, 1.20)	0.90 (0.73, 1.12)	0.95 (0.77, 1.17)	0.88 (0.71, 1.08)	0.208	0.98 (0.93, 1.03)
Multivariate HR*	1 (referent)	0.99 (0.80, 1.22)	0.92 (0.74, 1.15)	0.97 (0.78, 1.20)	0.90 (0.72, 1.13)	0.361	0.98 (0.93, 1.04)
ther deaths (n)	97	93	80	72	75		417
Unadjusted HR ³	I (referent)	0.74 (0.55, 1.00)	0.69 (0.50, 0.93)	0,59 (0.43, 0.80)	0.59 (0.44, 0.81)	<0.001	0.87 (0.81, 0.94)
Multivariate HR	1 (referent)	0.75 (0.56, 1.02)	0.71 (0.52, 0.97)	0.60 (0.44, 0.82)	0.62 (0.44, 0.85)	0.001	0.87 (0.80, 0.94)

(UV), cardiovascular disease: EPIC, European Prospective investigation into care a diversion and out of a second Cause-specific anormality excluded 126 cases with no information on cause of death. Cox proportional hazards regression analysis stratified by center, age, and sex. Cox proportional hazards regression analysis stratified by center, age, and sex. Cox proportional hazards regression analysis stratified by center, age, and sex.

Buckland G et al Am J Clin Nutr 2012;96:142-

The Impact of Olive Oil Consumption Pattern on the Risk of Acute Coronary Syndromes: The Cardio2000 Case-Control Study

MEROP D. KONTOGRANNI, PR.D.⁴ DEMORTHENIS B. PANAGIOTAKOS, PR.D.⁴ CHRISTINA CHRYSOHOOU, M.D., PR.D.⁴ CHRISTO PTISAVO⁴, M.D. PRID, ANTONIS ZAMPLIAR, PR.D.⁴ CHRISTODOULOS STEFANADR, M.D., PR.D⁴ "Department of Nutrition & Dietetics. Harokopio University of Athens, Athens, Greece," ⁴First Cardiology Clinic, Sch Medicine, University of Athens, Athens, Greece

- Seven hundred males and 148 females patients with first event of an ACS and 1078 population based controls, age and sex matched, were randomly selected.
- Detailed information regarding their medical records, alcohol intake, physical activity and smoking habits was recorded.
- Nutritional habits were evaluated with a semi-quantitative food-frequency questionnaire and use of oils in daily cooking or preparation of food was also recorded.
- Multiple logistic regression analysis estimated the odds ratio (OR) of having ACS by types of oil used, after taking into account the effect of several confounders.

Kontogianni M et al Clin Cardiol 2007:30:125-9

Odds ratios (95% confidence interval) for nonfatal acute coronary syndromes associated with pattern of olive oil consumption

	OR	95%	6 CI	Р
Oilcategory				
No use of olive oil (reference category)	1	-	-	
Exclusive use of olive oil	0.53	0.34	0.71	<0.001
Olive plus other oils or fats	0.77	0.54	1.09	0.14
Red meat intake (servings/week)	1.68	1.40	2.03	<0.001
Fruits and vegetables intake (servings/week)	0.66	0.57	0.76	0.001
Cereals intake (servings/week)	1.15	0.98	1.33	0.06
Alcohol intake (wineglasses/day	1.09	0.97	1.22	0.14

Kontogianni M et al Clin Cardiol 2007:30:125-9

Food	Total Lipids	Saturated fatty acids	Monounsaturated fatty acids	Polyunsaturated fatty acids
Butter	82	54	21	3
Margarine	82	27	37	14
Olive oil	100	14	73	12
Corn oil	100	17	25	56
Sunfloweroil	100	12	20	63

composition of various ons								
Content	Olive oil	Sunflower- seed oil	Fish oil	Palm oil	Red palm oil			
Total SFA (%)	10.9	-	2.6	51	51			
Total MUFA (%)	79-8	-	9-4	44.3	38			
Total PUFA (%)	9.3	60-75	81.8	3.7	11			
Stearic acid (%)	3-4		1.2	3.84	5			
Palmitic acid (%)	10-1		0.9	39-15	44			
Oleic acid (%)	72-78.9		3.8	43-62	38			
Linoleic acid (%)	5.7		1.7	11.32	11			
EPA (%)	-	60-70	32-2	-	-			
DHA (%)	-		31-2	-	-			
Vitamin E (ppm)	-		-	62 mg/kg	559-1000			
Carotenoids (ppm)	-	±500	-	1.2 ma/ka	500			
Polyphenols (mg/kg)	230-500	-	-	-	-			
Squaline (%)	0.7		-	Trace	1.1†			
Co-enzyme Q10 (mg/l)	-	-	-	0-4*	0.4*			

Bester D et al Nutr Res Rev2010;23:334-48

			Median age or baseline	Mediat follow-a	p Knoe	Namber of	CHD evens			Mohan-durary fat- lar (80% created range	ei.
Staty	Colendar year of inception	Backine solut	(10% central range)	Field and acadetal CHD events	CHD deaths	Fidal and peedand	Deghs	Dietery summent	SEA	MUEN	PUFAI
			ý.	2						S of many	
ABBS (7)	1977							ITQ			
F.		15,400	37 (39-76)	6.3	6.3	75	-41		113-(9.4-14.9)	12.7 (11.0-14.4)	8.8 (7.2-40.6)
34		928.2	55 (39-74)	6.3	6.3	148	49		10.7 (9.0-14.0)	12.6 (11.4-14.1)	9.0 (7.7-38.4)
ARRC (E)	1987							HFQ.			
P ²		6481	33 (47-62)	9.2	1.00	123			11.8 (8.1-15.7)	12.5 (8.5-163)	450.44.9
54		5540	54 (47-60)	9.2	92	269	58		128 (9.0-16.5)	13.8 (9.6-17.2)	51(16-7.0)
ATEC (%	1983							19-0			
M		21.111	17 (51-65)	6.0	6.8	1139	154		19.9 (14.5.257)	137 (114-162)	470380
FMC (80)	1955							1164			
		244	40 (34 45)	100	10.0	and a			100.0114.56.81	113.007.1075	220238
		222.2	47 (37-43)	10.0	10.0	155	8.47		21 1/16 1.26 00	119/94/19/0	21/16.12
1000 101	1000	2162	#101-000	1000		ALC:		PARTS IN	212 (10.1-2020)	113 (14-1300	23 (1.80.9)
Carls Los	10.00		All cash and	4444				Distant			
		1000	201000-000	100	100				193 (14.3-24.6)	15.2 (11.2-18.8)	00103-029
20	1000	1004	20 (w0-00)	1000	100	802			1877 (1912-2210)	15.8 (12.0-193)	0.014.3-9.30
PRPES (11)	1000	44.000						ng			*****
34	1000	41,194	23 (42-67)	9.7	9.7	1215	4/1		11,3 (2.8-14.8)	12.3 (8.3-1009	23 (4.3-6.0)
10HD (32)	1903							1100			
M'		8772	48 (41-59)	-	\$0.0	-	\$85		9.4 (6.0, 13.2)	102 (7.2, 13.4)	64 (3.6, 9.5)
LEHR (D)	1986							10.0			
		30,193	61 (56-67)		10.0		294		12.0 (0.1-15.3)	12.6 (0.4-15.6)	61(43-8.2)
NBES a (4)	1990							18-0			
		81,423	47 (38-37)	6.5	6.5	3HT	97		16.1 (11.5-20.7)	16.5 (11.6-21.4)	\$2 (3.6-7.5)
NR55 (4)	1986							TTQ			
		68,706	32 (43-62)	1000	10.0	090	209		11.0 (8.6-12.0)	12.1 (9.1-15.2)	6.0 (4.3-8.2)
VIP(14)	1992							IFQ			
14		00,555	50 (40-00)	4.3	-	23			143 (10.8-18.3)	115(54-147)	44(35-645
3.8		0824	50 (40, 40)	4.1	4.1	834	34		157 (11.9-20.1)	13.1 (10.316.3)	47(13.6.6)
WH6 (15)	1993							100			
P.		17.772	\$2.06.60	5.3	5.1	112	10		101 (7.1-13.5)	111/78/14/0	16141.7.6
100 100 100 100		344,696 (71)		6.5	6.5	\$249-021	2115136				

Olive Oil Polyphenols Decrease Blood Pressure and Improve Endothelial Function in Young Women with Mild Hypertension

- Rafael Moreno-Luna¹, Rocio Muñoz-Hernandez¹, Maria L. Miranda¹, Alzenira F. Costa¹, Luis Jimenez-Jimenez Antonio J. Vallejo-Vaz¹, Francisco J.G. Muriana³, Jose Villar¹ and Pablo Stiefel¹
 - A double-blind, randomized, crossover dietary intervention study was conducted.
 - After a run-in period of 4 months (baseline values), two diets were used, one with polyphenol-rich olive oil (~30 mg/day), the other with polyphenol-free olive oil.
 - Each dietary period lasted 2 months with a 4-week washout between diets.
 - Systolic and diastolic BP, serum or plasma biomarkers of endothelial function, oxidative stress, and inflammation, and ischemia-induced hyperemia in the forearm were measured.

Moreno Luna R et al Am J Hypertension 2012; 25:1299-1304

Endothelial function, oxidativ	e stress, and inn	amma	ation bio	omarkers in young
women with high-normal BP or	stage 1 essential	l hypei	rtensior	after 4 months on a
Mediterranean-style diet (ru	n-in period) and	chang	es afte r	2 months on the
polyphenolrich o	r the polyphenol	l-free	olive oil	diets

		Changes from b	aseline	P value*
Biomarker	Baseline	Polyphenol- rich olive oil	Polyphenol- free olive oil	
Nitrites/nitrates (µmol/l) ADMA (µmol/l) Ox-LDL (µg/l) CRP (mq/l)	19.7 0.82 153.0 1.6 ± 0.9	+4.7 -0.09 -28.2 -1.9 ±	+0.8 -0.04 -6.9 -0.6	<0.001 <0.01 <0.01 <0.001
Blood pressure (mm Hg) Systolic Diastolic IRH measurement (PU) HA	134.14 84.64 1,084	-7.91 -6.65 +345	-1.65 -2.17 +36	<0.001 <0.001 <0.001
Table values are mean ± SD, n = 24. ADMA, asymmetric dimethylargining reactive hyperemia; ox-LDL, oxidized	e; BP, blood pressure; C I low-density lipoproteii	RP, C-reactive protein; n;	HA, hyperemic area;	IRH, ischemia-

PU, perfusion units. *P value for the comparison across the intervention groups by ANOVA.

Moreno Luna R et al Am J Hypertension 2012; 25:1299-1304

- hypertensive effect of two similar olive oils, but with differences in their PC (refined: 14.7 mg/kg versus virgin: 161.0 mg/kg), in 40 males with stable CHD.
- The study was a placebo controlled, crossover, randomized trial.
- A raw daily dose of 50mL of VOO and refined olive oil (ROO) were sequentially administered over two periods of 3 weeks, preceded by 2week washout periods in which ROO was used.

Fito M et al Atherosclerosis 2005;181:149-58

Diastolic and systolic blood pressure, glucose, lipid, and oxidative status markers at baseline and after refined and virgin olive oil administration [mean (S.D.)]

u = 40	Post refined olive oil	Post virgin olive oil	Mean difference between	P	
	(14.67 mg/kg)	(161 mg/kg)	unterventions (95% confidence interval)	Intervention (olive oil) effect	
Systolic blood pressure (mmHg)	135.2 (6.58)	132.6 (5.6)	-2.53 (-3.78: -1.27)	0.001	
Diastolic blood pressure (mmHg)	78.4 (6.0)	79.6 (5.2)	1.16 (-0.06; 2.38)	0.061	
Glucose (mmol/L)	6.46 (2.05)	6.65 (2.23)	0.212 (-0.095; 0.519)	0.171	
Total cholesterol (mmol/L)	5.02 (0.99)	5.09 (0.85)	0.07 (-0.032: 0.017)	0.176	
HDL cholesterol (mmol/L)	1.14(0.32)	1.12 (0.29)	-0.021 (-0.054; 0.012)	0.207	
LDL cholesterol (mmol/L)	3.30 (0.16)	3.33 (0.13)	0.033 (-0.076; 0.142)	0.542	
Triglycerides (mmol/L)*	1.33 (0.99-1.63)	1.23 (0.88-1.71)	-0.0005 (-0.071; 0.07)	0.990	
Lipoprotein (a) (g/L) ⁴	0.27 (0.20-0.84)	0.34 (0.18-0.89)	0.017 (-0.008; 0.034)	0.208	
Oxidized LDL (µmol/L)	58.66 (23.05)	54.01 (19.89)	-4.66 (-7.08; -2.23)	<0.001	
OLAB (U/L)*	230 (122-495)	246 (140-487)	9.18 (-27,79; 9.42)	0.323	
Lipoperoxides (amol/L)	1.47 (1.23)	1.23 (0.72)	-0.24 (-0.40; -0.09)	0.003	
Olutathione peroxidase (U/L)	7308 (711)	7668 (854)	412 (35.98; 788)	0.033	
Total antioxidant status (mmol/L)	0.92 (0.12)	0.91 (0.11)	-0.01 (-0.03; 0.01)	0.301	
Tyrotol (µg/L urine)*	23.68 (9.18-53.3)	77.5 (74.8-81.0)	32.67 (3.18-62.16)	0.031	
Hydroxytyrosol (µg/L urine)4	87.2 (74.1-156)	484 (439-531)	374 (310-438)	<0.001	
Same To a later the second second and a	10.00 (2.91-17.00)	41.18 (11.1.61.9)	11 50 (4.67-67.17)	0.074	

Food	Goal
Mediterranean diet	
Recommended	
Olive oil*	≥4 tbsp/day
Tree nuts and peanuts†	≥3 servings/wk
Fresh fruits	≥3 servings/day
Vegetables	≥2 servings/day
Fish (especially fatty fish), seafood	≥3 servings/wk
Legumes	≥3 servings/wk
Sofrito‡	≥2 servings/wk
White meat	Instead of red meat
Wine with meals (optionally, only for habitual drinkers)	≥7 glasses/wk
Discouraged	
Soda drinks	<1 drink/day
Commercial bakery goods, sweets, and pastries§	<3 servings/wk
Spread fats	<1 serving/day
Red and processed meats	<1 serving/day

		Achemisc Remistr 234 (2014) 330-328				
北部法院的		Contents lists available at ScienceDirect				
5-54-5-2		Atherosclerosis				
Eille						
ELSEVIER	-	journal homepage: www.elsevier.com/locate/atherosclerosis				
Review						
Dietary fats	s and	cardiovascular disease: Putting together the pieces				
of a compli	icated	d puzzle				
George Micha	s*, Ret	nata Micha ^{a,b} , Antonis Zampelas ^{a,*}				
* Unit of Harman Natritio * Department of Epidem	in, Depart inlegs: Ma	nint of Food Science and Human Nurrition, Agricultural University of Athens, Iron Odan 73, Athens LHESS, Gronce vard School of Public Houth, Bunton, MA, USA				
Cont	ents					
1.	Intro	oduction				
2.	Meth	nods				
19493	2.1.	The traditional diet-heart paradigm				
	2.2.	Impact of dietary fats on blood lipids and lipoproteins				
	2.3.	The impact of dietary fats on cardiovascular morbidity and mortality				
		2.3.1. Saturated FA				
		2.3.2. Trans FA				
		2.3.3. PUFA				
		2.3.4. MUFA				
	2.4.	The impact of food sources of dietary fats on cardiovascular morbidity and mortality				
		2.4.1. Red and processed meat intake				
		2.4.2. Milk, other dairy products, and egg intake				
		2.4.3. Olive oil consumption				
		2.4.4 Nut consumption				

Dietary factor	Effect*	Related CVD outcomes ¹⁰	Source of evidence
Dietary fats			
SEA	Possible	-Incident CHD	Meta-analyses of cohorts [34-36]
PUFA in place of SFA	Probable	1 Incident CHD	Pooled analysis of cohorts [37]; meta-analyses of cohorts and RCTs [38,39]
Industrial trans fats	Convincing	† Incident CHD	Meta-analyses of cohorts [34,35,46,51]; meta-analysis of RCTs [39]
Ruminant trans fats	Possible	-Incident CHD	Meta-analysis of cohorts [51]
Seafood omega-3 fats	Probable	Incident CVD	Meta-analyses of RCTs [59,60]
	Possible	Prevalent CVD	Meta-analyses of RCTs [61,62]
Plant omega-3 fats	Possible	1 Incident CHD	Meta-analysis of cohorts [75]
MUFA in place of SFA	Possible	Incident CHD	Meta-analyses of cohorts and RCTs [35,37,39]
Major food sources			
Unprocessed red meats	Probable	-Incident CHD	Pooled analysis of cohorts [95]; meta-analysis of cohorts [92]
	Probable	† Incident stroke	Meta-analyses of cohorts [96,97]
Processed meats	Probable	† Incident CHD	Meta-analysis of cohorts [92] and 3 cohorts [93,94]
	Probable	† Incident stroke	Meta-analyses of cohorts [96.97]
Dairy	Possible	Lincident CVD	Meta-analyses of cohorts [101,102]
Egg	Probable	-Incident CVD	Meta-analyses of ophorts [111,112]
Olive oil	Probable	1 Incident CVD	1 RCT [119] and 3 cohorts [115-117]
Nuts/seeds	Probable	Lincident CHD	Meta-analysis of 1 RCT and 3 cohorts [127]
	Probable	1 Incident stroke	Meta-analysis of 1 RCT and 3 cohorts [127]

ats (e.g., coronary heart o abtained from high-qual rali for assessing causality of dier disease retainomapp (124-200), we required transmission excitationation were obtained from high-quarty published in prospective cohorts or randomized traiting (STL) as well a individual RT or propertive cohort. We evaluated the meta-subject on the design and sum peopletice and number of eversit, legals following, statistical method used, degree of heterogeneity, adjustment for confounders, and other potential bis of effect: [decrease in risk; thorease in risk; – no effect. Michaes G, Michae R & Zamppelaes A Atherosclerosis 2014;234:320-6

Σας ευχαριστώ πολύ για την προσοχή σας